Investigation of Genetic Algorithms with Self-Adaptive Crossover, Mutation, and Selection
نویسندگان
چکیده
A method of self-adaptive mutation, crossover and selection was implemented and applied in four genetic algorithms. So developed self-adapting algorithms were then compared, with respect to convergence, with a traditional genetic one, which contained constant rates of mutation and crossover. The experiments were conducted on six benchmark functions including two unimodal functions, three multimodal with many local minima, and one multimodal with a few local minima. The analysis of the results obtained was supported by statistical nonparametric Wilcoxon signed-rank tests. The algorithm employing self-adaptive selection revealed the best performance.
منابع مشابه
Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms
In terms of goal orientedness, selection is the driving force of Genetic Algorithms (GAs). In contrast to crossover and mutation, selection is completely generic, i.e. independent of the actually employed problem and its representation. GA-selection is usually implemented as selection for reproduction (parent selection). In this paper we propose a second selection step after reproduction which ...
متن کاملMulti-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملAdaptive Genetic Algorithm with Mutation and Crossover Matrices
A matrix formulation for an adaptive genetic algorithm is developed using mutation matrix and crossover matrix. Selection, mutation, and crossover are all parameter-free in the sense that the problem at a particular stage of evolution will choose the parameters automatically. This time dependent selection process was first developed in MOGA (mutation only genetic algorithm) [Szeto and Zhang, 20...
متن کامل